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ABSTRACT: As the demand for information increases, signal bandwidth carrying messages becomes 

increasingly wider, requirements on acquisition rate and processing rate become increasingly higher and the 

difficulty in broadband signal processing increases, existing analog-digital converters, transmission bandwidths, 

software and hardware systems and data storage devices cannot satisfy the needs, acquisition, storage, 

transmission and processing of signal bring huge pressure. Based on this, a nonparametric hierarchical Bayes 

learning method of image compression sparse representation was proposed, and a nonparametric hierarchical 

Bayes mixed factor model under Dirichle process distribution was established specific to the sparsity of 

geometrical model data of Bayes learning of lower-dimensional signal model, the consistency of subspaces, 

manifold and analysis of mixed factors, etc. The model can study the low-order Gaussian Mixture Model of 

high-dimensional image data restricted in low-dimensional subspaces, obtain the number of mixed factors and 

factors through automatic learning of given data set and use it as prior knowledge of data for the reestablishment 

of image compressed sensing. Effectiveness of the model was analyzed through simulation experiment.  

Keywords: sparsification, nonparametric, hierarchical model, Bayes learning, mixed factor analysis, 

compressed sensing 

 

I. INTRODUCTION 

It is well known, with the rapid development of mobile communication, 2G speech communication has translated 

into 3G/4G data communication; data information such as signal and image play an increasingly important part in 

medical science, internet, military communication and daily life, etc. People have higher requirements on the 

quality of information. [1]Therefore, basic framework of signal processing, higher requirements on acquisition rate 

and processing rate and bigger difficulties in broadband signal processing impose huge pressure on acquisition, 

storage, transmission and processing of signal. Existing analog-digital converters, transmission bandwidths, 

hardware and software systems and data storage devices are heavily challenged by how to process plenty of 

high-dimensional data contained in image information rapidly and accurately. Thus, how to translate 

high-dimensional data contained in image information into low-dimensional data and avoid loss of interesting 

information contained in high-dimensional data, learn a kind of low-dimensional single model and express 

high-dimensional data using less data characteristics become the core of signal and image processing and the key 

to process signals and images (such as compressing, denoising and feature extraction, etc.) efficiently and 

accurately. [2] 

 

II. COMPRESSED SENSING BASED ON BAYES ESTIMATION 

2.1 Problem description 

Suppose f is NN   image signal,   is the sparse transformation, w  is the projection coefficient in the 

transform domain (it is equal to NN  , it is 0 in most cases), that is, wf  . Projection matrix 

}     { N321

’’’’’    is NM  , where, NM  , then, the projection process of signal can be expressed as:
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nfy  '
(1) or nwy  (2) 

Where,  ' ; n  is the sum of internal and external noise and is subject to Gaussian distribution. Whereas

NM  , summation is unavailable using underdetermined system of equations (2). Suppose sparsification of w , 

 '  and meets the restricted isometry property ( RIP ), the second-best solution can be figured out using 

the solution of 1L , that is: }min{arg
1

2

2
wwyw 



, (3) 

2.2Bayes model 

For the perspective of Bayes model, all unknown parameters are construed as satisfying the random distribution of 

certain prior information. Whereas projection signal y  will be affected by internal and external noise, suppose it 

is subject to Gaussian distribution, whose variance is  12 
 and mean value is w , that is, 

),(),( 1  wyNwyp , (4). According to statistics, the conjugate distribution of inverse variance of 

Gaussian distribution is Gamma distribution. For the convenience of subsequent calculation, suppose parameter 

 12   is subject to Gamma distribution, that is, ),(),(   babap  , (5). According to the 

thought of maximum posterior probability, introduce Lapras prior distribution in order to maximize the 

sparsification of vector w , that is, )
2

exp(
2

)(
1

wwp


  , (6) model analysis, so hierarchical prior thought 

is introduced. Whereas the conjugate distribution of the mean value of Gaussian distribution is still Gaussian 

distribution, 



N

i

iiwNwp
1

1),0()(  , (7). Where, ）（ N ,, 21 . In order to maximize the sparsification of 

vector w , suppose each iw  is subject to Gaussian distribution of different parameters. Gamma distribution of 

the inverse varianceis stilled used in the second level prior distribution, that is,

)
2

exp(
2

)
2

,1()( i
iip

  , 0,0i   . Multiply (7) and (8) and integrate  , then, 

)exp(
2

)()()()()(
2

  
i

iN

N

ii

i

ii wdpwpdpwpwp 


 (9)[3]-[4]Finally, suppose prior 

distribution of hyper-parameter  . The distribution proposed should enable enough flexibility and a large 

variation range of   . Thus, suppose   is subject to Gamma distribution, whose mean value and variance are 1 

and v
2  respectively, )

2
,

2
()( vvvp   . (10) Through combining the prior function of all hierarchies of the 

aforesaid equations (4), (5), (6), (7), (8) and (10), )()()()(),(),,,,(  ppwppwypywp  . (11) 

2.3Nonparametric estimation  

Nonparametric Bayes model is a probability model dispense with parameter hypothesis. HDP model  

Hierarchical Dirichlet Process is a multilayer form based on Dirichlet Process Mixture Model, Dirichlet Process is 

about distribution of distribution, and that is, sampling of the process is a random process. Whereas countless 

disperse probabilities can be obtained from the sampled distribution, it cannot be described using limited 

parameters. Hierarchical Dirichlet Process model is shown in Fig. 1. Stick-breaking process function of HDP 
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model is described as below:   

  - )(GEM        (12) 

 k

 - ),( DP      (13)    

e
  -  H        (14) 

1kk ss
 - 

)(
1kslMultinomia 

(15) 

kk sy
 - ）（ eF       (16) 

In (12),   is ionConcentrat  parameter of basic distribution H , they constitute a Dirichlet Process

0G - ),( HDP  . In (13),   is ionConcentrat  parameter of Dirichlet Process jG - ),( 0GDP   based on 

basic distribution 0G , k  is an independent distribution in relation to Dirichlet  Process of ),( DP . ks  is 

indicative factor, parameters are subject to distribution jG  and the value is k  by the probability jk , F  is 

the distribution function of observed data. 

 

III. Realization of Bayes compressed sensing 

3.1 Image sparse representation model  

According to calculation and harmonic analysis theory, image 1 NRu  can be expressed as the linear 

combination of a set of atoms 
Iii 

 , atoms are taken as column vectors and constitute the dictionary 1 NR , 

and image u  can be expressed as u  (16). Where,  II ......,1， )( NI  , atomic parameter index set is a 

finite set, NI  . According to sparse representation theory of image, image u  has sparse representation in a 

proper dictionary , that is, coefficient Iii  ）（  should have only a few nonzero elements, and the number 

of nonzero elements should be far less than dimensions of image, namely N
0

 . Over-complete sparse 

representation of image is a new image model which can effectively describe internal structure and features of 

signal and has been widely applied to denoising, defuzzification and repair, etc. of image.[5] 

     Selection and design of over-complete dictionary is a key problem of sparse representation theory. 

Presently, there are three major image sparse representation dictionaries: orthogonal system, frame system and 

over-complete dictionary. Traditionally, image is represented using non-redundant orthogonal dictionaries 

(orthogonal system) such as Fourier transform, DTC transform and Wavelet Transform. Modern calculation and 

harmonic analysis show that redundant frame system is conducive to the formation of sparser representation; 

meanwhile, redundant system can make noise and error more stable. In case two constants 0A  and 0B  exist 

in atomic sequence 
Iii 

  and any Hx  (Hilbert space) satisfies 
222

, xBxxA
Ii

i 


 (17), then, 


Iii 

  constitutes the frame of H , BA,  are the frame bounds. If BA  , 
Iii 

  is a tight frame. There are 

many tight frames. For example, the cascade of M orthogonal basis can constitute a tight frame, and MBA  , 
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and even wavelets of two sets of orthogonal wavelet basis cascade can constitute the frame of  22 RLH  . Besides, 

Curevlet  can also constitute the tight frame of  22 RL , as well as Wave-Atom, Gabor frame, non-subsample 

Wavelet Transform, etc. Sparse representation theory indicates that sparser representation of image can be realized 

through further enhancing redundancy of system and forming over-complete dictionary. Generally, we can obtain 

the dictionary through combining existing orthogonal base or frames, or designing parameterized generation 

function, transforming parameters, or learning or training algorithm.   

 

3.2  Realization of algorithm  

Orthogonal matching pursuit algorithm (OMP) is a typical representative. Based on improvement of 

OMP, regularization OMP, various reconstructing algorithms such as segmentation OMP, compressed sampling 

matching pursuit algorithm and subspace pursuit algorithm have been obtained.   

With OMP as an example, the process of greedy compressed sensing algorithms wasbriefly introduced 

in this paper.[6] 

 

Process of OMP algorithm is shown below:  

Input: original signal is NRX  , sparseness is K ; measurement matrix is NMR  ; measurement 

vector is MRy  

Output: reconstructing signal is NRX 


. 

 Initialize all parameters: primary iteration t=1, restoring signal is 0


X , residual error is yr 0 , 

index set is 0 ;  

 Search index 
i , find out footer   corresponding to the maximum value in the inner product of 

residual error r and measurement matrix i and enable it to satisfy  


ii
Ni

i r  ,maxarg 1
....3,2,1

;  

 Renew index set: }{2 iii   , find out the set of reconstructing atoms in the measurement matrix, 

],[ 1 iii  ;  

 According to the Least Squares:






 12minarg iii xyx ;  

Renew residual error: 11 



  iii rrr
ii  , where, 


i

 is the pseudo-inverse matrix of 
i

 , 

TT

iiii    1)( ;  

 Add an iteration and inspect iteration suspensive condition. If Kt  , iteration stops; if Kt  , 

repeat step 2;  

Output reconstructing signal: signal 


X generated by the position corresponding to 


X  is the signal to 

be reconstructed. [7] 

OMP searches the optimal atom in iteration and ensures every residual error renewed is orthogonal to 

the new atom using Gram-Schmidorthogonalization, which not only ensures the optimal choice of atom and 

improves the quality of reconstruction, but also ensures the rate of convergence and greatly reduces the processing 

time of calculation.  
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OMP adopts the following maximum correlation matching criterion: 

  jir
j




,max 1 Where, 1ir  is the residual component of signal, j  is the j  th atom in matrix . In 

the following simulation experiment, suppose the original signal is NRX  , 512N , sparseness is 20K , 

measurement matrix is NMR  , the times of measurement is 256M , and X  is subject to random Gaussian 

mixed distribution, that is:  ))(,0(~| sRNsx Where,    2

ni snnsR  , s  is a group of ransom variables 

 TNsssss 1210 ......,,  , and s  is subject to Bernoulli distribution )( 1pBeroulli , 
1p  is the probability of 

1-N

0nn}{s   and is equal to 1, 11 p , here, 04.0/1  NKp . 

 

IV. Analysis of simulation result 

 

Matlab2015a, core i7 processor was adopted and lean figure (256*256) was used for simulation experiment in this 

paper.  
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FIG. 1 Image contrast 

 

Compared with the first figure, the last figure has a lot of spotted noise, and the middle two figures have 

a better visual effect. Based on removal of nonparametric Bayes Gaussian noise, the filtering effect is better.  

  

Fig. 2  bcs/ts- bcs/mfacs 

 

Whereas TS- BCS method was used only for structural information of wavelet coefficient and excluded 

data manifold, and BCS method just estimated hypothesis information and structural information of data was not 

adopted, accurate results of reconstruction were not obtained. Compressed sensing method based on compressed 

sensing Bayes model obtained prior assumption probability distribution of reconstruction problem using structural 

information of data, so accurate reconstruction was obtained. Particularly, the result obtained under a few 

observed values and based on MFA model was superior to other methods.    

 

V. CONCLUSION 

Image processing using sparse nonparametric Bayes compressed sensing reconstructing algorithm 

overcame the advantage of great Bayes computational burden, improved the calculation efficiency and fulfilled 

certain practical value. Different from other algorithms, it adopted nonparametric non-supervision self-learning 

method and automatically added iteration in the sample data training process. Without human interference and 

through comparison with other algorithms, the superiority of performance was proved and its significant practical 

value was further verified; follow-up studies can be further optimized specific to the reduction of algorithm 

complexity.   
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